Algorithms for Machine Learning Notes
Instructor: Prof. Alina Ene

Student: Wancheng Lin

This document is based on the slides and my notes from Prof. Alina Ene’s lectures CS 599 E1: Algorithms
for Machine Learning in 2025 fall.

Contents

1 Introduction 3
1.1 Course OVEIVIEW v o i i e e e e e e e e e e 3
1.2 Language Models: The Basics 3
1.3 n-Gram Models 3
1.4 An Early Neural Language Model (Bengio et al., 2003) 4
1.5 Deep Insights and Illustrations L 4
1.6 Key Takeaways o o it e e e 5
1.7 References and Further Reading 5

2 Supervised Learning, Architectures, Transformers 6
2.1 Supervised Learning Framework 6
2.2 Neural Network Architectures e 6
2.3 From Static to Contextual Embeddings Lo o 7
2.4 Attention Mechanism L 7
2.5 Extensions of Attention e e 8
2.6 The Transformer Architecture e 8
2.7 Key References e 10

3 FlashAttention and Efficient Transformers 10
3.1 Motivation e e e e e e 10
3.2 Softmax Attention in Detail e 10
3.3 10-Aware Algorithm Design 11
3.4 Numerical Stability and Streaming Softmax L oL oL 11
3.5 FlashAttention Algorithm o 11
3.6 Complexity Analysis L e 11
3.7 Variants and Extensions 12
3.8 KeylInsights. o . o e 12
3.9 References and Further Reading L oo 12

4 Attention Variants for Time and Memory Optimization 13
4.1 Dimension Reduction and SVD 13
4.2 Multi-Head Attention (MHA) L o 13
4.3 Multi-Query Attention (MQA) L 13
4.4 Grouped-Query Attention (GQA) L 13
4.5 Multi-Head Latent Attention (MLA) o 14
4.6 CompariSOIS v . i e e e e e e e e e e e e 14
4.7 References e 14

5 Backpropagation Algorithm 15
5.1 Supervised Learning Framework oo 15
5.2 Gradient-based Optimization e e 15
5.3 Backpropagation: Computing Gradients 15
5.4 Example: Gradient via Chain Rule 15
5.5 Forward and Backward Passo 16
5.6 General Chain Rule (Component Form) 16
5.7 Matrix Formulation e 16
5.8 Example in Matrix Formo 16
5.9 Backward Function 16
5.10 Backpropagation Algorithm L 16

https://cs-people.bu.edu/aene/cs599fa25/index.html
https://cs-people.bu.edu/aene/cs599fa25/index.html

5.11 Remarks 17

5.12 References L e 17
Backpropagation: Module Formulas 17
6.1 Setup o 17
6.2 Linear Module e e e 17
6.3 Non-linear Activations L L 17
6.4 Feed-Forward Network (FFN) e 17
6.5 Attention Module L 18
6.6 Memory Optimization: Activation Checkpointing 18
6.7 Takeaways o . e e e e 19

1 Introduction

1.1 Course Overview

This seminar explores efficient algorithms for training deep learning models at scale, with a strong emphasis
on modern large language models (LLMs). We will discuss both classical foundations and cutting-edge
techniques from recent research papers.

Topics we will cover:

o Architectures: deep neural networks, transformers, state-space models (SSMs), mixture-of-experts
(MoE).

e Algorithms for training, inference, and fine-tuning LLMs.
o Attention mechanisms: efficient GPU implementations, approximations for time/memory reduction.

« Optimization methods: stochastic gradient descent (SGD), adaptive algorithms (Adam, AdaGrad),
new variants (e.g., Muon).

o Parallel/distributed training: ZeRO, DeepSpeed, fully sharded data parallelism (FSDP).

o Efficiency techniques: sparsity, low-rank approximations, quantization, graph search, retrieval-augmented
generation (RAG).

Not covered: reinforcement learning, alignment, prompting.
1.2 Language Models: The Basics

A language model (LM) assigns probabilities to text sequences. For example:
Pr(“the mouse ate the cheese”) = 0.3, Pr(“the cheese ate the mouse”) = 107°.

Definition 1.1 (Language Model). Let V = {wy,ws,...,wy} be a vocabulary. A language model defines
probabilities

m
Pr(wy,wa, ..., wy) = HPr(wt | wyy .. wiq),
t=1

using the chain rule of probability.

Remark. The above factorization highlights why LMs are difficult: we must model long dependencies. This
motivates approximations (e.g., n-grams) or neural networks that learn representations.

1.3 n-Gram Models

In an n-gram model:
Pr(w [wy,...,wi—1) = Pr(w; | We—pi1,. .., we-1).

Counting-based approach:

count (Wy—p41y .- We—1, W)

Pr(wt‘wt7n+17-”7wt71): count(wt o W 1)
Ly ey Wi

Remark. While intuitive, this approach suffers from:
o Space explosion: for vocabulary size |V|, storing counts for n-grams requires |V |" space.

o Sparsity: many sequences never appear in training data.

Neural-network approach: Instead of counts, embed words into vectors and use a neural network to
predict probabilities.

1.4 An Early Neural Language Model (Bengio et al., 2003)
Bengio et al. proposed one of the first neural probabilistic language models:

p = softmax(Wx 4+ U tanh(Hz + d) + b),

where:
o z=(C(wi—p+1),...,C(wi_1)) is the concatenation of embeddings.

e (' is the embedding matrix.

o z =tanh(Hz + d) is the hidden representation.

e p is a probability distribution over vocabulary V.

BENGIO, DUCHARME, VINCENT AND JAUVIN

i-th output = P(w; = i| context)
softmax
Ceeoo [X (XX D
4 7
4 7 . \
’ 7 most| computation here \
‘ ‘ \

U 1 \

U 1 \

' N 1
,’ ! tanh !
K P XX — o) |
I I
! ’
1 ’
1 ’

4
1 S .
C(errw‘ S C(foz) C(w,,l) P g
e o) ... (o - ® (e o)
Table N ~. Matrix C
:zoéfup shared parameters
across words
index for wy_p41 index for w,_» index for w,_;
Figure 1: Neural architecture: f(i, w1, ,Wi—n+1) = &I, C(Wi—1),- -+ ,C(Wi—nt1)) Where g is the

neural network and C(i) is the i-th word feature vector.

Figure 1: Neural architecture from Bengio et al. (2003): embedding layer — hidden layer — softmax.

Why embeddings matter:
o Capture semantic similarity (cat ~ dog, walk =~ run).
o Allow generalization to unseen sequences by mapping similar words close in vector space.

o Reduce the curse of dimensionality: number of parameters grows linearly in |V, not exponentially.

1.5 Deep Insights and Illustrations

Example (Embedding Power).
Suppose we want to predict the next word in “The cat is walking in the ___”. This exact sequence may not

exist in the training data. However, embeddings allow the model to learn:

C(cat) ~ C(dog),
C(walking) ~ C(running),

so the model assigns high probability to park, even without explicit training counts.

Remark. This shift from memorizing counts to learning distributed representations is the intellectual
foundation of modern LLMs like GPT, PaLM, and DeepSeek.

1.6 Key Takeaways

e Language modeling reduces to conditional probability estimation over sequences.
e n-grams are limited by sparsity and scalability.
e Neural approaches with embeddings overcome these limitations by learning shared representations.

« Bengio et al. (2003) marks the beginning of neural LMs, paving the way for transformers.

1.7 References and Further Reading

e Original slides: CS 599 course website.

o Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic Language Model.
JMLR, 3, 1137-1155.

o Stanford CS224N notes: Notes on LM and RNNs.

o Karpathy, A. (2022). Lecture on MLPs.

https://cs-people.bu.edu/aene/cs599fa25/index.html
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
https://youtu.be/TCH_1BHY58I

2 Supervised Learning, Architectures, Transformers

2.1 Supervised Learning Framework

We recall the language modeling problem: given a vocabulary V' = {w1,...,wx} and a large text corpus, the
goal is to learn the conditional distribution:

Pr(ws | wi, ..., wi—1).

Training data: A dataset D = {(z(®,y®)) :1 <4 < K} consists of pairs where 2(? is a context and y(¥ is
the next word.

Hypothesis function: A model hy : contexts — RV maps a context to a probability distribution over
words. The parameters 6 are learned from data.

Loss function: Cross-Entropy. If y € RIV! is a one-hot label vector, and § = hg(x) is the predicted

distribution:
V]

Lee y y Zyj 1OgyJ

The empirical risk is
1w . ‘
= K che(y(z)v hﬁ(I(Z)))-
i=1

Definition 2.1 (Supervised Learning via ERM). The learning problem is to solve

K

min L(0) = %Zf(y(i)’he(x(i))).

i=1

Remark. For language models, £ is almost always cross-entropy, equivalent to maximum likelihood estimation
under the categorical distribution.
2.2 Neural Network Architectures

Feed-forward module:
x— f(Wx +b),

where f is applied elementwise.

O—— T [70 y

Figure 2: Feed-forward module: linear transformation followed by nonlinearity.

Multi-Layer Perceptron (MLP):

MO R KO MO NG IR)

Nonlinearities:

1

gy ReLU: max{0,z}, GELU, SwiGLU, etc.

Sigmoid: o(z) =

@ |W<1>x<o>+b<1>|_>| £() |_>|W<2>x<1 b(2) |—>$<2>

Figure 3: MLP: stacking multiple feed-forward modules.

Remark. Deep networks are universal function approxzimators. The nonlinear activation is essential; other-
wise the entire network reduces to a linear map.

Residual connections (He et al., 2015):
2@ = (=D L FEN(2C-1).

This eases optimization by letting the model focus on learning residuals rather than full mappings.

FFN ®—>)

Figure 4: Residual connection: the output is z(*~ plus the transformation FFN(z(~1).

Layer Normalization (Ba et al., 2016): For x € R¢,

1< i
W= 5w o) =[5 - @)
LayerNorm(x) = w v+ 8.

Remark. Normalization controls covariate shift inside networks, stabilizing gradients and accelerating con-
vergence.

2.3 From Static to Contextual Embeddings
Static embeddings: Each word w € V has a fixed vector C'(w) € R™. This ignores context.

Contextual embeddings: Construct embeddings depending on surrounding words. This motivates the
attention mechanism.

“You shall know a word by the company it keeps.” — J. R. Firth (1957).

2.4 Attention Mechanism

Let z1,...,2, € R? be embeddings. Define query, key, and value vectors:
¢ = Qui, ki =Kz, vy =V,

Attention score:
sij = (¢, k).

Normalized weights:

Output embedding:
n
0; = Z aijvj.
j=1

Remark. Fach output vector o; is a contextualized representation of token i, a weighted average of all value
vectors, with weights reflecting similarity.

Remark (Why Three Matrices?). The decomposition into query, key, and value vectors is not arbitrary—it

has an intuitive interpretation.

o Queries (Q): represent the current information need. In analogy to a database, the query is the
question we ask: “Given the word dog, which other words in the sentence help me predict its meaning?”

kj = Ka; > (g, k;) softmax

CM

’Uj = Vl‘j

Figure 5: Attention: queries match keys, retrieve values, producing contextual embeddings.

o Keys (K): serve as indices for lookup. Each token broadcasts an addressable signature of its content,
much like how database records have primary keys used to match queries.

o Values (V): store the actual content to be retrieved. Once a query matches a key (via similarity),
the corresponding value is the information passed forward. In a database analogy, values are the data
payload stored in the record.

Thus, the attention mechanism acts as a content-addressable memory: we do not retrieve information by
position but by similarity of queries to keys. The weights a;; are learned soft matches, generalizing the notion
of exact equality in a database lookup into a graded notion of similarity.

This separation into (Q, K, V') also provides flexibility:

1. Different subspaces: the same embedding x; may project differently into query space vs. key space,
allowing asymmetric roles (who is asking vs. who is answering).

2. Multi-head attention: multiple Q, K,V projections act as different “database queries” running in parallel,

retrieving complementary information from the same context.

Matrix form: If X € R"*9 stacks row vectors z;,

TyT
0= softmax(XQKX> XV.

Vd

2.5 Extensions of Attention

Scaling (Vaswani et al., 2017): Divide by V/d to prevent large dot products, which would cause softmax
saturation and small gradients.

Masked attention: For autoregressive LM, enforce causality by setting
_ {<qlak]>a JS%

Sij = . .
—00, 7 >

Position embeddings: Since attention is permutation-invariant, inject position information via sinusoidal
or learned embeddings:

_ o i — i

Ti = T4 +p’i? pi,?t = sin (100002t/d)) pi,2t+1 = COSs (100002t/d) .

Modern variants: relative position encodings, RoPE (rotary embeddings).

2.6 The Transformer Architecture
Introduced in Attention Is All You Need (Vaswani et al., 2017).

" Itis the dominant architecture for modern large language models

The blocks are repeated (stacked)
several times

Probabilities

Softmax
N
Linear
¢ . . .
Norm + = +
aag = Linear + non-linear + linear
Feed-Forward / . .
Repeat __—Residual connection + LayerNorm
Add&Nom < |
blocks o i -
i Attention variant where we run
v | multiple attention operations
S (with different O, K, V) and
o concatenate the outputs
Decoder Transformer

Figures from: https://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf

Core block:
e Multi-head self-attention.
o Residual connections + LayerNorm.

o Position-wise feed-forward network.

Variants:
o Encoder: full self-attention (no masking).
o Decoder: masked self-attention (causal).

¢ Encoder-Decoder: combines both for seq2seq tasks.

Probabilities Probabilities Probabilities
Softmax
~
Softmax Softmax s
~ ~ Repeat for numberof ~
Linear Linear decoder blocks. Add&Norm
= ~ Attend only to output of
las Encoder Block. Feed-Forward
Add & Norm Add & Norm
N N Add x;\ Norm
- Feed-F d Multi-Head
Feed-Forward ced-ronwar Repeat for number of Attention
Repeat rendr i,
Add & Norm
Add & N Add & Norm £
b I ocC kS ~ orm A AN Masked Muli-
Masked Multi- Mu.lti-I-!ead eedrord Hea/dﬁ??on
Head Attention Attention ok
Add & Norm Add Position
Block Block L] Embeddings
Attention p— Ed‘
Add Position Add Position mbeddigs
Embeddings Embeddings Block Decoder Inputs
T T Add Position
Embeddings Embeddings Embe%dings
Decoder Inputs Encoder Inputs Embeddings
Encoder Inputs
Decoder Transformer Encoder Transformer Encoder-Decoder Transformer

Figures from: https://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf

Example (Multi-head Attention).
For k heads, split d into d/k. Each head learns different projections QW , K« vV and outputs:

head,, = Attention(XQ“), X K XV @),

Final output concatenates heads and projects back.

Benefits:
e Parallelizable training on GPUs.

e Strong empirical performance across NLP tasks.

Challenges:
« Quadratic cost of attention (O(n?)).
e Training instabilities, mitigated by normalization and initialization tricks.

2.7 Key References
o Vaswani et al. (2017): Attention is All You Need (arXiv:1706.03762).

o Bahdanau et al. (2015): Neural Machine Translation by Jointly Learning to Align and Translate.
o He et al. (2015): Residual connections (arXiv:1512.03385).

o Ba et al. (2016): Layer normalization (arXiv:1607.06450).

e Suet al. (2023): RoPE embeddings (arXiv:2104.09864).

o Stanford CS224N draft notes on self-attention and transformers: CS224N Notes.

3 FlashAttention and Efficient Transformers

Reference: Dao et al. (2022), FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness,
arXiv:2205.14135.

3.1 Motivation

Self-attention is the core operation in transformers:

_ o)
Attn(Q, K, V) = softmax(7 V,

where
Q=XWqo, K=XWg, V=XWy, XecR™.

Naive complexity:
« Computing QK ": O(n?d).
e Memory: must materialize n x n attention score matrix.

« For long sequences (n = 10* or more), both time and memory become bottlenecks.

Remark. Even though GPUs have high FLOPs, they are often I0-bound. That is, the bottleneck is not
arithmetic but reading/writing large intermediate matrices from GPU memory (HBM).

3.2 Softmax Attention in Detail
For query ¢; € R?, keys k; € R?, and values v; € R%:

ks
n exp(qi/gj)
0i =Y vy, @i = o
P

Matrix form:

-
O = softmax(Qj{E) V.

Definition 3.1 (Attention Score and Normalization). The numerator s;; = exp((g;, k;)/v/d) is the unnor-
malized score. The denominator Z; = 5 ; Sij ensures row-stochasticity: > g = 1.

Remark. Computing s;; for all (i,7) requires storing n? wvalues. This is the key challenge FlashAttention
addresses.

10

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1607.06450
https://arxiv.org/pdf/2104.09864
https://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf
https://arxiv.org/abs/2205.14135

3.3 I0-Aware Algorithm Design

Observation: The naive algorithm materializes the n x n score matrix S = QK T, which requires O(n?)
memory traffic to/from HBM. Yet the final output O only requires O(nd) memory.

Goal: Avoid storing the entire score matrix, compute a;; “on the fly” while keeping results exact.
3.4 Numerical Stability and Streaming Softmax
Recall the log-sum-exp trick for stability:

esj—m
softmax(si, ..., s,); = S e

j/e] J

For each query i, define:

j=1
Then:
qi-k;
exp(T —m1>
Q5 = 7
Thus,

Remark. We only need to keep track of (m;, £;,0;) while scanning through keys and values sequentially. This
enables a streaming algorithm.
3.5 FlashAttention Algorithm

Idea: Process queries in blocks (tiles) that fit in GPU SRAM (fast on-chip memory). For each tile: 1. Load
a block of queries @y, keys Ky, values V; into SRAM. 2. Compute partial scores and update (m;, ¢;, 0;) for
queries in the tile. 3. Move to next block, update incrementally. 4. After all blocks, normalize outputs.

Formally: For each query g¢;,
d)

l
) — max{m{”?, max s;;},
j€block
new old (otd) _,(new) new

Kg):&(-)emi i + g exp(sij—mg)),

j€block
1d (old) __ (new)

ognew) = OZ(-O)em i + Z exp(si; — mgnew))vj.

j€E€block

Remark. This recurrence ensures numerical stability and exact equivalence to naive attention, while avoiding
materialization of the full score matrix.

3.6 Complexity Analysis

Naive attention:
Time: O(nd), Memory I0: O(n?).

FlashAttention:
Time: O(n*d) (same arithmetic),
Memory I10: O(nd) (linear in sequence length).

Example (Memory Scaling).
For n = 16,000, d = 128:

« Naive memory: n? = 2.56 x 108 floats ~ 1 GB.

« FlashAttention memory: nd = 2.05 x 10° floats ~ 8 MB.

11

3.7 Variants and Extensions

FlashAttention-2: Improves parallelism by splitting queries/keys into smaller blocks.
FlashAttention-3: Optimized for Hopper GPUs with tensor cores.

Applications: Training GPT-style LLMs with sequence lengths up to 64k tokens.

3.8 Key Insights
e The bottleneck in attention is memory IO, not FLOPs.

« By tiling and streaming, FlashAttention reduces IO from O(n?) to O(nd).
e Numerical stability is ensured via the log-sum-exp recurrence.

e The algorithm is exact, not approximate.

3.9 References and Further Reading

o Dao et al. (2022), FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness,
arXiv:2205.14135.

o Tri Dao’s blog and talks: https://tridao.me/publications/.

e HuggingFace FlashAttention Docs.

12

https://arxiv.org/abs/2205.14135
https://tridao.me/publications/
https://huggingface.co/docs/transformers/perf_flash_attention

4 Attention Variants for Time and Memory Optimization

Modern transformers rely on multi-head attention (MHA). While effective, the quadratic complexity in se-
quence length n and the memory cost of caching keys and values make inference expensive. Recent work
proposes variants to trade off time, memory, and accuracy.

4.1 Dimension Reduction and SVD

We start with the mathematical foundation of low-rank approximation.

Definition 4.1 (Singular Value Decomposition). Let A € R"*¢. Then
T
A= Zoiuiv; =Uxv’,
i=1

where
e 01 > 09> - >0, >0 are the singular values,
e u; € R™ are left singular vectors,
e v; € R? are right singular vectors.

Remark. The span of the first k right singular vectors wvi,...,vr is the best-fit k-dimensional subspace,
manimizing the squared distance of all rows of A to the subspace.

Definition 4.2 (Rank-k Approximation). The truncated SVD

k
Ak: E Ji’LLﬂ)Z-T
i=1

is the best rank-k approximation of A in Frobenius norm.

Remark. This motivates compressing large parameter matrices (e.g. Q, K,V) into low-rank forms, saving
memory and time.

4.2 Multi-Head Attention (MHA)

Recall self-attention: given input X € R"*¢, we compute
Q=XWq, K=XWg, V=XWy.

The attention output is

Attn(Q, K, V) = softmax(?f{) V.

In MHA with A heads:
head; = Attn(Q;, K;,V;), MHA(X) = [heady;...;heady|Wo.
Remark. FEach head captures different relational patterns (syntaz, semantics, position). Bul memory usage
scales with O(hnd), since each head has its own Q, K, V.

4.3 Multi-Query Attention (MQA)

Definition 4.3 (Multi-Query Attention, Shazeer (2019)). Each head uses a distinct @; but shares the same
K,V across all heads: '
Qi=XWY, K=XWg, V=XWy.

Remark. This reduces memory for key-value caches from O(hnd) to O(nd). However, accuracy degrades
stnce all heads look at the same K,V .

4.4 Grouped-Query Attention (GQA)

Definition 4.4 (Grouped-Query Attention, Ainslie et al. (2023)). Partition A query heads into g groups.
Each group shares one K,V pair:

Q; = XWS), KO =xw?, v =xw,

where j indexes the group.

13

Remark. This interpolates between:
e g = h: equivalent to MHA (full expressiveness, high memory).
o g=1: equivalent to MQA (low memory, lower accuracy).

Intermediate g balances quality and efficiency.

4.5 Multi-Head Latent Attention (MLA)

Definition 4.5 (Multi-Head Latent Attention, DeepSeek-AT (2024)). MLA keeps separate @, K,V but com-
presses them into low-rank latent vectors:

d
cxvi = Wprvas € R, k= Wykcerve, v = Wuvekve,

cQt = WDth S Rdc, qr = WUQCQ,t.

Remark. Instead of caching all K,V , we only cache the compressed latent vector cxv+, reducing KV memory
from O(hnd) to O(d.n), where d. < d. Empirical results show MLA matches or outperforms MHA while
using a fraction of KV cache.

4.6 Comparisons

Memory Cost per Token. (from DeepSeek, 2024)

Mechanism ‘ KV Cache Size
MHA O(hd)
MQA O(d)
GQA (g groups) O(gd)
MLA 0(d,.), de < d

Accuracy Tradeoffs. On benchmarks (MMLU, C-Eval, CMMLU):
o« MHA: strongest baseline.
e MQA: large memory savings but accuracy loss.
¢ GQA: intermediate accuracy, intermediate memory.
e MLA: stronger than MHA, with much smaller KV cache.

Remark. MLA is enabled by the empirical observation that K,V matrices in MHA are approximately low-
rank (Yu et al., 2024).

4.7 References
o Shazeer (2019): Multi-Query Attention, arXiv:1911.02150.

o Ainslie et al. (2023): Grouped-Query Attention, arXiv:2305.13245.
o DeepSeek-Al (2024): Multi-Head Latent Attention, arXiv:2405.04434.

e Yu et al. (2024): Empirical low-rank structure of K,V arXiv:2406.07056.

14

https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2405.04434
https://arxiv.org/pdf/2406.07056

5 Backpropagation Algorithm

5.1 Supervised Learning Framework
We consider a dataset
D= {(x(z)7y(l)) 11 <i < K},

where each z(¥) is a context (input) and y(* is the label (e.g., next-word).
We choose a hypothesis class hg (e.g. neural networks) and a loss function £(y, §) (e.g. cross-entropy). The
empirical risk is

1 & . .
f(0) = Ve > Uy ho(xD)).
i=1

Definition 5.1 (Supervised Learning via ERM). The learning problem is

mein f(6).
5.2 Gradient-based Optimization
To minimize f(6), we use gradient descent:
0+ 0—nVf@).
The gradient is .
i = (0, 20

Key observations:

e f(0) is complex but structured.

o We can compute Vgl(y, hgo(x)) for a single example and average over dataset.
o —Vf(0) points in the steepest descent direction.

5.3 Backpropagation: Computing Gradients

Neural networks are compositions of functions (modules). Backprop computes derivatives module by module,
using the chain rule.
Distinction from symbolic calculus:

o Calculus: we compute derivative formulas symbolically (e.g. f(x) = 23 = f'(z) = 32?).

o Backprop: we only need derivatives at specific parameter values (e.g. f'(2) = 12).

This allows efficient numerical evaluation rather than symbolic manipulation.

5.4 Example: Gradient via Chain Rule

Suppose = € R, define
2

y1 =, Y2 =7,
z = 2y1 + y2.
Then 9 9
92 _, 0z
oy)
o 0y
— =1, == =2z
Ox T Oz v

By chain rule:
0z 0z Oy; Oz Oy
Ox Oy Oz + Oys Ox 1 @) e

Atz =3: 9z/0x = 8.

15

5.5 Forward and Backward Pass

e Forward pass: compute values y1,y2, 2z from input z. Example: t =3 = y; =3,y =9,z = 15.
o Backward pass: compute gradients 0z/0y, 0z/0x using chain rule.
This mimics actual backprop: first evaluate the network, then propagate derivatives backward.

5.6 General Chain Rule (Component Form)
Let x € R™, y = f(x) € R", 2 = g(y) € RP. Then

Oz zn: 9gi Ofy
k=1

oz ; dyy O’

This is the multivariate chain rule.

5.7 Matrix Formulation
Define Jacobian of f:

% gfl
1 Tm
Jp(x)="1+:+ -+ [eRY™
Ofn .. Ofn
Oz, 0T,

Chain rule in matrix form:
Jgof(@) = Jo(f(2)) - Jp(2).

Transpose gives backward rule:

0z 0Oy 0z

or Oz oy
5.8 Example in Matrix Form
r=3,y=(z,2%) = (3,9), 2 = 2y1 + y2 = 15. We have

9z [2 1
ay 110 o |2¢)

0z
ox

Thus
= [1 zx] m =242z =8.

5.9 Backward Function

We define the backward mapping
of

bro(v) = Pz v,

where v = %.
y

This maps sensitivities w.r.t. outputs to sensitivities w.r.t. inputs. This is the mathematical basis of
automatic differentiation and backprop.

5.10 Backpropagation Algorithm
To compute Vol(y, ho(x)):

1. Do a forward pass: compute intermediate values for each module.

2. Do a backward pass: apply by, for each module, propagating derivatives backward from the loss.
3. Accumulate gradients w.r.t. parameters 6.

Formally: for a module y = f(z), given v = 9z/0y, backprop computes

9z _ 9y
dxr Oz v

This is applied recursively module by module until reaching the input and parameters.

16

5.11 Remarks

e Backprop is efficient: cost is proportional to a forward pass.
e FEach module needs to implement its local backward rule.

e Frameworks like PyTorch implement this via .backward().

5.12 References
o Stanford CS229 Notes: Chapter 7, Deep Learning link

o Dao et al. (2022), FlashAttention: memory and IO efficient attention link

6 Backpropagation: Module Formulas
6.1 Setup

Given a dataset D = {(z(?,y()}, a neural network with parameters # makes a prediction
9 = ho(«"),

and incurs a scalar loss £(§) € R. Training requires computing Vg/.
Backpropagation starts by computing

ot
oy’
then propagates gradients backwards using the chain rule:
o _of o
dxr Oz Oy
The backward function is

bra(v) = o1 v
Fa\% = g

where v = % are the sensitivities from later layers.

6.2 Linear Module
Forward: y = Wx, where z € R™, W € R"*™ y € R™.

Backward:
bwae(v) = W'o, bwa,w (V)ij = T5v;.
Thus: Y. ot Y. ot
g TY* I il T
-V oy aw (a;,) v

6.3 Non-linear Activations

Forward: y = o(z) = (o(21),...,0(xm)), elementwise.
Backward:
bou(v) =0’ (z) O,

where © is elementwise multiplication.

Examples:)
= o= o' (x) =o(z)(1 —o(z)).

o(z) =tanh(z) = o(z) =1— tanh?(x).

o()

o(x) =ReLU(z) = o'(z) = 1us0.

6.4 Feed-Forward Network (FFN)
Example: 3-layer FFN

https://cs229.stanford.edu/main_notes.pdf
https://arxiv.org/abs/2205.14135

y D = W0) — (W),
Y@ = W@) — (@)
y® = @)
0= 0(y®).

<

)

Backward pass:
or
g ~ s (D),

o _, il o _, il
0-@ ~ =@\ gue)) @ T T WE 5u))
o _, il
oy — Tov?\ 9,)

o _, il o _, ot
m_ lin,z(1) ay(Q) oW lin, W (2) W)
o _, ot
oy~ Tev\ 5)

o, ae o, o0
m_ lin,z(0) 8y(1) oaow lin, W (1) W :

6.5 Attention Module
Setup: Q, K,V € R"*4,

S=QK'" e R"*" P =softmax(S) € R"™*", O =PV e R"*%
We want V{ w.r.t. Q, K, V.

Step 1. Gradient w.r.t. V:

o - Y4
av. = 2 Pigor

Step 2. Gradient w.r.t. P:
ol ol

aP’L B aOz

Step 3. Gradient w.r.t. S: Softmax Jacobian: if p = softmax(s), then

dp
35 = diag(p) —pp
Thus for row i: iy 90
= P.)— P.Pl .
aSZ (dlag(l.) 7 2) aB
Step 4. Gradient w.r.t. Q, K:
o~ o
8@1 B v—=1 aSw v
ov . 9¢
= Qu:-

OKj. 4= 08y

6.6 Memory Optimization: Activation Checkpointing

Naive backprop stores all activations z(* during forward pass. This is memory expensive, especially in
attention.

18

Remark. Activation checkpointing: Only store every d-th activation 2049 . During backprop, recompute
missing activations with mini-forward passes. This trades increased compute (roughly 2¢ FLOPs) for large
memory savings.

Extensions:
 Store approximate activations (sparse, low-rank, low-precision).
e Combine approximation with checkpointing.

o FlashAttention (Dao et al. 2022) uses memory- and IO-efficient exact formulas.

6.7 Takeaways
e Backprop is applying the chain rule module by module.

e Each module needs local forward + backward formulas: linear, activation, FFN, attention.

o Efficient training requires both mathematical understanding and system-level memory optimization.

19

	Introduction
	Course Overview
	Language Models: The Basics
	n-Gram Models
	An Early Neural Language Model (Bengio et al., 2003)
	Deep Insights and Illustrations
	Key Takeaways
	References and Further Reading

	Supervised Learning, Architectures, Transformers
	Supervised Learning Framework
	Neural Network Architectures
	From Static to Contextual Embeddings
	Attention Mechanism
	Extensions of Attention
	The Transformer Architecture
	Key References

	FlashAttention and Efficient Transformers
	Motivation
	Softmax Attention in Detail
	IO-Aware Algorithm Design
	Numerical Stability and Streaming Softmax
	FlashAttention Algorithm
	Complexity Analysis
	Variants and Extensions
	Key Insights
	References and Further Reading

	Attention Variants for Time and Memory Optimization
	Dimension Reduction and SVD
	Multi-Head Attention (MHA)
	Multi-Query Attention (MQA)
	Grouped-Query Attention (GQA)
	Multi-Head Latent Attention (MLA)
	Comparisons
	References

	Backpropagation Algorithm
	Supervised Learning Framework
	Gradient-based Optimization
	Backpropagation: Computing Gradients
	Example: Gradient via Chain Rule
	Forward and Backward Pass
	General Chain Rule (Component Form)
	Matrix Formulation
	Example in Matrix Form
	Backward Function
	Backpropagation Algorithm
	Remarks
	References

	Backpropagation: Module Formulas
	Setup
	Linear Module
	Non-linear Activations
	Feed-Forward Network (FFN)
	Attention Module
	Memory Optimization: Activation Checkpointing
	Takeaways

